Process NCBI SRA metadata archives with streaming, filtering, and resume capabilities.
Pronounced like Japanese sake (酒)
Multiple search modes with similarity thresholds, confidence scoring, and vector embeddings
Filter by organism, platform, library details, date ranges, and sequencing metrics
Group results by field, get counts, and analyze metadata distributions
HTTP API with OpenAPI spec and Model Context Protocol for AI assistant integration
Process 14GB+ archives with minimal memory using zero-copy streaming
Intelligent checkpoint system for resuming interrupted operations
# Using Go
go install github.com/nishad/srake/cmd/srake@latest
# Using Homebrew
brew tap nishad/srake
brew install srake
# Using Docker
docker pull ghcr.io/nishad/srake:latest
# Auto-select and ingest
srake ingest --auto
# With filters
srake ingest --file archive.tar.gz \
--taxon-ids 9606 \
--platforms ILLUMINA \
--strategies RNA-Seq
# Build search index
srake index --build --progress
# Build with vector embeddings
srake index --build --with-embeddings
# Verify index
srake index --stats
# Quality-controlled search
srake search "breast cancer" \
--similarity-threshold 0.7 \
--show-confidence
# Vector semantic search
srake search "tumor gene expression" \
--search-mode vector
# Export results
srake search "RNA-Seq" --format json
# Start API server
srake server --port 8082 \
--enable-cors \
--enable-mcp
# Test API
curl "http://localhost:8082/api/v1/search?\
query=cancer&similarity_threshold=0.7"