Quick Start¶
Get started with Hyperseed in 5 minutes! This guide walks you through your first analysis.
Prerequisites¶
Before starting, ensure you have:
- Installed Hyperseed (
pip install hyperseed) - Hyperspectral data in ENVI format with white/dark references
Your First Analysis¶
Step 1: Prepare Your Data¶
Ensure your dataset follows this structure:
dataset/sample_001/
├── capture/
│ ├── data.raw # Main hyperspectral data
│ ├── data.hdr # ENVI header file
│ ├── WHITEREF_data.raw # White reference
│ ├── WHITEREF_data.hdr
│ ├── DARKREF_data.raw # Dark reference
│ └── DARKREF_data.hdr
Data Structure
See Data Preparation for detailed information about expected data structure.
Step 2: Run Basic Analysis¶
Run your first analysis with default settings:
This command:
- ✅ Loads the hyperspectral data
- ✅ Applies automatic calibration
- ✅ Segments individual seeds
- ✅ Extracts spectral signatures
- ✅ Saves results to results.csv
Step 3: View Results¶
The analysis generates a CSV file with spectral data:
seed_id,index,centroid_y,centroid_x,area,eccentricity,solidity,band_1000nm,band_1005nm,...
1,0,234.5,156.2,435,0.34,0.92,0.234,0.237,...
2,1,345.6,234.1,421,0.28,0.94,0.229,0.232,...
Each row represents one seed with: - Spatial information: centroid coordinates - Morphological properties: area, eccentricity, solidity - Spectral data: reflectance values for each wavelength band
Adding Visualizations¶
To generate plots along with the CSV data:
This creates four visualization files:
sample_001_distribution.png: Spatial and area distributionsample_001_segmentation.png: Numbered seeds with boundariessample_001_spectra.png: Individual spectral curvessample_001_spectra_statistics.png: Statistical analysis
Recommended First Run
Always use --export-plots on your first analysis to visually verify the segmentation quality.
Recommended Settings¶
For optimal results with seed analysis:
hyperseed analyze dataset/sample_001 \
--output results.csv \
--min-pixels 50 \
--preprocess minimal \
--export-plots
Parameters explained:
--min-pixels 50: Filter out objects smaller than 50 pixels (reduces noise)--preprocess minimal: Light preprocessing optimized for segmentation--export-plots: Generate visualization plots
Batch Processing¶
To process multiple datasets:
# Process all datasets in the directory
hyperseed batch dataset/ \
--output-dir results/ \
--min-pixels 50
This will:
- Process all subdirectories in dataset/
- Save results to results/ directory
- Apply consistent settings to all datasets
Common Options¶
Here are the most commonly used options:
| Option | Description | Example |
|---|---|---|
--output |
Output CSV file path | results.csv |
--export-plots |
Generate visualization plots | (flag) |
--min-pixels |
Minimum seed size in pixels | 50 |
--preprocess |
Preprocessing method | minimal, standard, advanced, none |
--no-outlier-removal |
Disable automatic outlier removal | (flag) |
--config |
Use custom configuration file | config.yaml |
What's Next?¶
Customize Your Analysis¶
Learn how to create custom configurations:
# Generate a configuration template
hyperseed config --output my_config.yaml --preset minimal
# Use your custom configuration
hyperseed analyze dataset/sample_001 --config my_config.yaml
Advanced Workflows¶
Explore advanced features:
- Preprocessing Options: SNV, derivatives, baseline correction
- Segmentation Algorithms: Threshold, watershed, combined methods
- Batch Processing: Processing multiple datasets efficiently
Command-Line Reference¶
For complete command documentation:
- CLI Reference: All commands and options
- Analyze Command: Detailed analysis options
- Batch Command: Batch processing guide
Example: Complete Workflow¶
Here's a complete example workflow:
# 1. Analyze a single dataset with visualizations
hyperseed analyze dataset/sample_001 \
--output results/sample_001.csv \
--min-pixels 50 \
--preprocess minimal \
--export-plots
# 2. Review the plots and adjust if needed
# 3. Process all datasets with the same settings
hyperseed batch dataset/ \
--output-dir results/ \
--min-pixels 50 \
--preprocess minimal
# 4. Results are now in results/ directory
ls results/
# sample_001.csv sample_002.csv sample_003.csv ...
Getting Help¶
Need assistance?
# Get general help
hyperseed --help
# Get help for specific command
hyperseed analyze --help
hyperseed batch --help
Or check the Troubleshooting Guide for common issues.
Congratulations! You've completed your first Hyperseed analysis. Continue to the Configuration Guide to learn about customization options.